College Chemistry

Inspiring Greatness
INDEPENDENCE SCHOOL DISTRICT

The following learning targets represent the major concepts studied and assessed in this course.

Semester 1:

Unit 1: Essential Ideas

- Provide examples of the importance of chemistry in everyday life.
- Describe the basic properties of each physical state of matter.
- Apply the law of conservation of matter.
- Define and give examples of atoms and molecules.
- Identify properties of and changes in matter as physical or chemical.
- Describe the properties and units of length, mass, volume, density, temperature, and time.
- Perform basic unit calculations and conversions in the metric and other unit systems.
- Correctly represent uncertainty in quantities using significant figures; apply proper rounding rules to computed quantities.
- Use dimensional analysis to carry out unit conversions for a given property and computations involving two or more properties.

Unit 2: Atoms, Molecules, and Ions

- Use postulates of Dalton's atomic theory to explain the laws of definite and multiple proportions.
- Outline milestones in the development of modern atomic theory.
- Describe the three subatomic particles that compose atoms.
- Define isotopes and give examples for several elements.
- Write and interpret symbols that depict the atomic number, mass number, and charge of an atom or iron
- Calculate average atomic mass and isotopic abundance.
- Symbolize the composition of molecules using molecular formulas and empirical formulas.
- Represent the bonding arrangement of atoms within molecules using structural formulas.
- Explain the relation between mass, moles, and numbers of atoms or molecules and perform calculations deriving these quantities from one another.

Unit 3: Electronic Structure and Periodic Properties of Elements

- Explain the basic behaviour of waves, including travelling waves and standing waves.
- Use appropriate equations to calculate related light-wave properties such as period, frequency, wavelength, and energy.
- Describe the Bohr model of the hydrogen atom and use the Rydberg equation to calculate energies of light emitted or absorbed by hydrogen atoms.
- Understand the general idea of the quantum mechanical description of electron in an atom, and that it uses the
 notion of three-dimensional wave functions, or orbitals, that define the distribution of probability to find an
 electron in a particular part of space.
- List and describe traits of the four quantum numbers that form the basis for completely specifying the state of an electron in an atom.
- Derive the predicted ground-state electron configurations of atoms.
- Relate electron configurations to element classifications in the periodic table.
- Describe and explain the observed trends in atomic size, ionization energy, and electron affinity of the elements.
- Predict the general properties of elements based on their location within the periodic table.
- Identify metals, nonmetals, and metalloids by their properties and/or location on the periodic table.
- Define ionic and molecular compounds.
- Predict the type of compound formed from elements based on their location within the periodic table.
- Determine formulas for simple ionic compounds.

College Chemistry

Inspiring Greatness
INDEPENDENCE SCHOOL DISTRICT

The following learning targets represent the major concepts studied and assessed in this course.

Unit 4: Chemical Bonding and Molecular Geometry

- Explain the formation of cations, anions, and ionic compounds.
- Predict the charge of common metallic and nonmetallic elements, and write their electron configurations.
- Describe the formation of covalent bonds.
- Define electronegativity and assess the polarity of covalent bonds.
- Derive names for common types of inorganic compounds using a systematic approach.
- Draw Lewis structures depicting the bonding in simple molecules.
- Use formal charges to identify the most reasonable Lewis structure for a given molecule.
- Explain the concept of resonance and draw Lewis structures representing resonance forms for a given molecule.
- Predict the structures of small molecules using valence shell electron pair repulsion theory.
- Explain the concepts of polar covalent bonds and molecular polarity.

Unit 5: Advanced Theories of Bonding

- Describe the formation of covalent bonds in terms of atomic orbital overlap.
- Define and give examples of σ and π bonds.
- Explain the concept of atomic orbital hybridization and determine the hybrid orbital associated with various molecular geometries.
- Describe multiple covalent bonding in terms of atomic orbital overlap.
- Relate the concept of resonance to π -bonding and electron delocalization.
- Outline the basic quantum-mechanical approach to deriving molecular orbitals from atomic orbitals.
- Describe traits of bonding and antibonding molecular orbitals.
- Write molecular electron configurations for first and second row diatomic molecules.

Semester 2:

Unit 6: Composition of Substances and Solutions

- Calculate formula masses for covalent and ionic compounds.
- Describe the fundamental properties of solutions.
- Calculate solution concentrations using molarity.
- Perform dilution calculations using the dilution equation.
- Define the concentration units of mass percentage, volume percentage, mass-volume percentage, parts-per-million, and parts-per-billion.
- Perform computations relating a solution's concentration and its components' volumes and/or masses using these
 units.

Unit 7: Stoichiometry of Chemical Reactions

- Derive chemical equations from narrative descriptions of chemical reactions.
- Write and balance chemical equations in molecular, total ionic, and net ionic formats.
- Define three chemical reactions types and classify chemical reactions based on their descriptions or chemical equations
- Use balanced chemical equations to derive stoichiometric factors relating amounts of reactants and products
- Explain the concepts of theoretical yield and limiting reactants.
- Derive the theoretical yield for a reaction under specified conditions.
- Calculate the percent yield for a reaction.
- Perform stoichiometric calculations using typical titration and gravimetric data.

College Chemistry

Inspiring Greatness
INDEPENDENCE SCHOOL DISTRICT

The following learning targets represent the major concepts studied and assessed in this course.

Unit 8: Gases

- Define and convert among the units of pressure measurements.
- Use the ideal gas law, and related gas laws, to compute the values of various gas properties under specified conditions.
- Use the ideal gas law to compute densities and molar masses.
- State Dalton's law of partial pressures and use it in calculations involving gaseous mixtures.
- State Graham's law and use it to compute relevant gas properties.
- State the postulates of kinetic-molecular theory and use them to explain the gas laws.
- Describe the physical factors that lead to deviations from ideal gas behavior and explain how they are represented in the van der Waals equation.
- Define compressibility (Z) and describe how its variation with pressure reflects non-ideal behavior.

Unit 9: Thermochemistry

- Define energy, distinguish types of energy, and describe the nature of energy changes that accompany chemical and physical changes.
- Define and distinguish specific heat and heat capacity, and describe the physical implications of both.
- Perform calculations involving heat, specific heat, and temperature change.
- Calculate and interpret heat and related properties using typical calorimetry data.
- State the first law of thermodynamics.
- Write and balance thermochemical equations.
- Calculate enthalpy changes for various chemical reactions.
- Explain Hess's law and use it to compute reaction enthalpies.
- Use the Born-Haber cycle to compute lattice energies for ionic compounds.
- Use average covalent bond energies to estimate enthalpies of reaction.

Unit 10: Liquids and Solids

- Describe the types of intermolecular forces possible between atoms or molecules in condensed phases.
- Identify the types of intermolecular forces experienced by specific molecules based on their structures.
- Explain the relation between the intermolecular forces present within a substance and the temperatures associated with changes in its physical state.
- Distinguish between adhesive and cohesive forces.
- Describe the roles of intermolecular attractive forces in each of these properties/phenomena.
- Explain the relation between phase transition temperatures and intermolecular attractive forces.
- Describe the processes represented by typical heating and cooling curves, and compute heat flows and enthalpy changes accompanying these processes.
- Explain the construction and use of a typical phase diagram
- Use phase diagrams to identify stable phases at given temperatures and pressures, and to describe phase transitions resulting from changes in these properties.
- Define and describe the bonding and properties of ionic, molecular, metallic and covalent network crystalline solids.
- Describe the main types of crystalline solids: ionic solids, metallic solids, covalent network solids, and molecular solids
- Explain the ways in which crystal defects can occur in a solid.
- Describe the arrangement of atoms and ions in crystalline structures.
- Compute ionic radii using unit cell dimensions.
- Explain the use of X-ray diffraction measurements in determining crystalline structures.